viernes, 17 de septiembre de 2010

Transporte de Glucosa: GLUT y SGLT

La diabetes mellitus es una enfermedad que incapacita al cuerpo para metabolizar o usar eficazmente los carbohidratos, las proteínas y las grasas. Cuando comemos, los alimentos (especialmente carbohidratos y frutas) se convierten en glucosa. Todas las células del cuerpo necesitan glucosa para vivir, pero la glucosa no puede penetrar en las células sin la intervención de la insulina. La insulina se produce en las células Beta, que están ubicadas en el extremo del páncreas.

Por ejemplo, cuando comemos un pedazo de pan, una vez digerido se convierte en glucosa. La glucosa circula a través de la corriente sanguínea para alimentar a cada célula del cuerpo. La presencia de glucosa estimula las células Beta del páncreas para liberar insulina. La insulina llega hasta cada célula y actúa como una llave en sus receptores, con el fin de abrir sus puertas y dejar a la glucosa entrar. Si no hay insulina o los receptores de las células no funcionan, la glucosa no puede penetrar en las células, y la persona afectada sufrirá de carencias de nutrientes.

La glucosa es el monosacárido más importante de la naturaleza, pues proporciona energía a las células de una amplia gama de organismos; el transporte de este azúcar al interior de la célula, es un proceso básico para el metabolismo energético y en consecuencia, para los procesos que mantienen la vida.

El transporte de la glucosa a través de la membrana celular, se lleva a cabo por dos familias de proteínas de membrana: Transportadores de glucosa acoplados a Sodio (SGLT) y las proteínas facilitadoras del transporte de glucosa (GLUT). Los primeros se expresan principalmente en epitelios que se encargan de absorber y reabsorber nutrientes.

Además otras hexosas como la galactosa y fructosa cumplen funciones importantes en las células eucarióticas. Estas moléculas son incapaces de difundir directamente a través de las membranas celulares por lo que requieren proteínas transportadoras especializadas para entrar al interior celular. Dichas biomoléculas pertenecen a un grupo de transportadores constituida por 2 familias de proteínas: la familia de los Glut´s (del inglés Glucose Transporters) y la familia de los co-transportadores de sodio y glucosa.

Según la información obtenida de la secuencia de aminoácidos por medio de librerías de cADN todos poseen una estructura básica similar: 12 (Gluts) o 14 (SGLT) dominios trasmembrana. Igualmente todos parecen estar glicosilados en alguna de sus asas extracelulares.

En los últimos siete años ha habido un explosivo incremento en la información sobre estos transportadores, de hecho, hasta hace diez años solo se conocían 6 transportadores pero esta familia ha crecido rápidamente hasta llegar a 14 miembros para los Gluts y 6 miembros para los SGLT´s. El impacto de estos descubrimientos se hace notar cuando se analizan los procesos en los que se involucran estas proteínas: Control de la glicemia basal y post-prandial; mecanismos de absorción de la glucosa y fructosa en el intestino delgado; absorción de fructosa en los espermatozoides; reabsorción de glucosa a nivel tubular renal y yeyuno; maduración de la expresión de Glut´s en la mama en lactación; incorporación de glucosa al músculo durante el ejercicio; mecanismo sensor en la secreción de insulina y respuestas adaptativa del metabolismo energético durante estados de estrés, etc.


Transporte de Glucosa


Familia de los co-transportadores de Na+/Glucosa (SGLT)

En el epitelio intestinal y epitelio de los túbulos contorneados proximal y distal existen sistemas de co-transporte de glucosa acoplados a Na+ que permiten la absorción rápida de esta molécula desde el íleo hacia el sistema portal y además de la reabsorción de la glucosa filtrada en el glomérulo nuevamente al torrente circulatorio. Este sistema se denomina SGLT (Sodium/Glucose Transporters), del cual se conocen 6 isoformas (SGTL1-6) que aprovechan el transporte del Na+ a favor de su gradiente de concentración para generar una corriente electroquímica que produce los cambios conformacionales necesarios para la traslocación de la glucosa a través de la membrana plasmática.

SGLT-1 (SLC5A1)
El gen del SGLT-1 se denomina SLC5-A1 y fue aislado a partir de librerías de cDNA de intestino delgado de conejo. Con una extensión de 80 Kb y 15 exones se ubica en el cromosoma 22 en la región q13.1. Su trascripto es una proteína de 664 aminoácidos y 73KDa con una estructura secundaria formada por 14 α-hélices cuyos extremos amino y carboxilo terminales se encuentran en el espacio extracelular.

En el ser humano este transportador se expresa primariamente a nivel del íleon, el sitio fundamental de absorción de monosacáridos como la glucosa, galactosa, manosa y fructosa. Este transportador es específico para la absorción de glucosa y galactosa en las células epiteliales del ribete en cepillo.  Existe aún controversia de cual es la vía más importante que toma el agua para ingresar al epitelio intestinal, sin embargo, hay 3 vías posibles conocidas:

1. Difusión pasiva del agua a través de la membrana de los enterocitos: Se sabe desde hace tiempo que la membrana plasmática es levemente permeable al agua, en especial, si se crea una diferencia en la concentración de solutos tal como ocurre en el co-transporte de Na+ y glucosa. Sin embargo, la magnitud de la diferencia de gradiente no es suficiente para crear una corriente osmótica suficiente que explique la absorción de 10 litros de agua por día.

2. Difusión de agua a través del SGLT-1 junto con el Na+ y glucosa (Transporte activo secundario): Investigaciones recientes han determinado que el SGLT-1 se comporta como un transportador de agua, movilizando unas 260 moléculas de agua por cada ciclo de transporte de 2 iones Na+ y cada molécula de glucosa, lo cual representa unos 5 litros de agua/día, por lo que, igual que en el caso anterior, no explica la movilidad de 10 litros de agua/día.

3. Difusión de agua a través de otros co-transportadores de nutrientes (Transporte activo secundario): Otros co-transportadores como los transportadores para aminoácidos y péptidos, así como el co-transportador de Na+/yoduro y el K+/Cl- pueden, al igual que el SGLT-1 pueden transportar de 30 – 50 moléculas de agua por ciclo.

4. Transporte de agua a través de las Acuaporinas (AQP): Se han descrito proteínas pequeñas de unos 45 kDa que contienen 6 α-hélices trasmembrana que se encargan de servir de poros para el transporte específico de agua y que recibieron el nombre de Acuaporinas. Estas proteínas son capaces de transportar las moléculas de agua a una velocidad 100 veces mayor que cualquier co-transportador de solutos.

SGLT 1 y 2

SGLT-2 (SLC5A2)
El gen de este co-transportador se aisló de librerías de tejido renal humano en el cromosoma 16 p11.2 que se expresa fundamentalmente en la corteza renal y en mucho menor grado en el íleo. Este transportador es una proteína integral de membrana de 672 aminoácidos con una estructura secundaria similar al resto de los miembros de esta familia y que se encuentra en las células epiteliales del túbulo contorneado proximal, de allí, que la función principal de este co-transportador es la reabsorción de Na+, glucosa y agua a nivel renal bajo los mismos principios del SGLT-1. Sin embargo, el descubrimiento y la caracterización de la acuaporina 2 en el túbulo contorneado proximal y las acuaporinas 2 y 6 en los túbulos colectores obligarán en un futuro próximo a la revisión de los procesos de transporte de solutos y agua a través del epitelio tubular renal.

SGLT-3 (SLC5A4 ó SAAT1)
El gen de este Co-transportador se ubica en el cromosoma 22q12.2-q12.3 y se aisló por primera vez de librerías de riñones de cerdo y posteriormente en riñones humanos, ubicándose solo a 0,10 mb corriente abajo del gen del Glut-1 con una distribución de exones e intrones similar, por lo que se cree que se originó de una duplicación de éste último. Este gen codifica una proteína de 659 aminoácidos que se ha detectado en músculo esquelético, sistema nervioso central y en neuronas de los plexos nerviosos sub-mucosos y mioentéricos a nivel de la placa motora. Este transportador tiene baja afinidad por la glucosa (50mM) así como una muy baja capacidad de transporte para la misma. Evidencia reciente indica que se comporta como glucosensor en la membrana plasmática de las neuronas colinérgicas y del tejido muscular liso y estriado, regulando de una forma aún desconocida la actividad muscular.

SGLT-4 (SLC5A9), SGLT-5 (SLC5A10) y SGLT-6 (SLC5A11)
El ARNm del SGLT-4 se encuentra fundamentalmente en el intestino y riñón y su transcipto posee actividad transportadora de glucosa con un Km de 2,6 mM. La manosa tiene una potente actividad inhibidora del transporte de glucosa, por lo que se cree que es capaz de transportar casi todos los monosacáridos presentes en la dieta a través del epitelio intestinal o del epitelio tubular renal. El ARNm del SGLT-5 se encuentra fundamentalmente en el intestino delgado y riñón, aún no se cuenta con datos sobre el Km y sustratos a transportar.  El gen del transportador SGLT-6 se encuentra en el cromosoma humano 16p12-p11, el cual está dividido en 16 exones generando una proteina de 675 aminoácidos con 14 dominios transmembrana, compartiendo gran homología con el SGLT-1. De forma interesante, la región del genoma donde se encuentra este transportador se relaciona con el gen responsable del síndrome de discinesia y convulsiones infantiles así como el síndrome de convulsión infantil familiar benigna.

Transportadores de difusión facilitada para Hexosas (GLUTS)
Si se considera cualquier Glut dentro del contexto de una gran familia de proteínas puede notarse de forma inmediata que todos poseen características comunes que en términos bioquímicos se denominan "firma molecular de los transportadores de glucosa" y que no es más que un conjunto de secuencias primarias aminoacídicas extremadamente conservadas que determinan estructuras secundarias y terciarias (dominios o motifs) que son responsables de las características funcionales de la proteína: especificidad por uno o más carbohidratos, afinidad por el sustrato, distribución tisular, ubicación celular, regulación de su actividad por hormonas, etc.

Función del GLUT

GLUT 1 (SLC2A1): Un Glut de alta afinidad presente en tejidos que utilizan a la glucosa como combustible principal
El Glut-1 es una proteína altamente hidrofóbica ya que el 60% de sus residuos de aminoácidos son hidrofóbicos, lo cual es consistente con el hecho de ser una proteína trasmembrana que cuenta con la organización secundaria de todos los Gluts: Doce alfa-hélices trasmembrana con asas extra e intracelulares que unen dichas alfa-hélices cuyos grupos amino y carboxiloterminal se encuentran orientados hacia el citosol. Es importante señalar que los aminoácidos más conservados entre los diferentes Glut´s del humano se encuentran en las 12 alfa-hélices y las mayores divergencias se han encontrado en el asa intracelular que conecta las alfa hélices 6 y 7 así como en los dominios amino y carboxilo terminal.
El Glut-1 parece ser el transportador de glucosa más ampliamente distribuido en el ser humano. Este se expresa en numerosos tejidos fetales y adultos como los eritrocitos, células endoteliales, células nerviosas, placenta, glóbulos blancos, células de la retina, riñón (mesangio), tejido adiposo, etc.

GLUT2 (SLC2A2): Un Glut con función glucosensora
El Glut-2 es un transportador de glucosa de baja afinidad (Km = 15–20 mM) que se expresa en el hígado humano adulto, riñón, células beta de los islotes de Langerhans y en la membrana basolateral de las células epiteliales del intestino delgado. Su gen se ubica en el cromosoma 3q26.1-26.3 y posee una extensión de 186,9 MB.

El Glut-2 actúa como un regulador que solo permite la entrada de glucosa cuando está lo suficiente elevada en plasma como para requerir la liberación de una cantidad significativamente importante de insulina.

Otro caso interesante es la intervención del Glut-2 en el metabolismo hepático de la glucosa. Después de las comidas, el hígado es capaz de incorporar la glucosa proveniente de los alimentos gracias al Glut-2 para ser convertida rápidamente en glucógeno. De forma inversa, durante el período post-pandrial tardío (período comprendido de 6 a 8 horas después de las comidas) el glucógeno sufre degradación generando moléculas de glucosa que salen de la célula hepática a la sangre, manteniendo así los niveles de glucosa plasmática dentro de límites normales. De esta forma, es fácil notar que el Glut-2 es un transportador de tipo bidireccional que puede transportar glucosa desde la sangre al tejido o desde el tejido hacia la sangre, hecho particularmente cierto a nivel hepático y renal funcionando como sensor de la concentración plasmática de glucosa y permitiendo su intercambio entre la sangre y el hepatocito dependiendo de la condición alimentaria predominante en el momento.  Recientemente se ha descubierto que el Glut-2 tiene también la habilidad de transportar fructosa.

GLUT 3 (SLC2A3): El Glut de más alta afinidad por la glucosa
El Glut-3 es un transportador de glucosa de alta afinidad (Km = 1-2 mM) que fue caracterizado primariamente en cerebro. Bajos niveles de Glut-3 se han detectado en miocardio fetal y adulto, placenta, hígado y músculo. La presencia de este transportador co-agregado con el Glut-1 en tejido nervioso habla a favor de que este transportador tenga funciones de mantenimiento del nivel basal de glucosa en neuronas y placenta. Recientemente se ha comprobado su expresión en las células de trofoectodermo de embriones de ratón. El bloqueo de la expresión de este Glut conlleva a la muerte por apoptosis del embrión comprobando la importancia de este transportador en el desarrollo embrionario.

GLUT 4(SLC2A4): Un Glut con gran movilidad
El Glut-4 es un transportador de alta afinidad para la glucosa (Km = 5 mM) que se expresa fundamentalmente en tejido muscular estriado, tejido muscular cardíaco y adipocito. Su gen se ubica en el cromosoma 17p13 y tiene una extensión de 8,4 MB. Este transportador no se expresa en tejidos embrionarios (ni pre ni post-implantación) y es único en el sentido de la regulación de su localización en el citosol o en la membrana por la insulina. En condiciones basales, la vasta mayoría de las moléculas de Glut-4 se encuentran localizadas dentro de vesículas en el citosol que forman dos tipos de compartimientos bien definidos, ya que un grupo de estas vesículas responden a la señal de la insulina y otro grupo responde fundamentalmente al estímulo que representa la actividad física. Este comportamiento representa un mecanismo muy fino de regulación del metabolismo de la glucosa que solo permite la entrada de glucosa al tejido muscular cuando es lo suficientemente elevada como para estimular la secreción de insulina y que en última instancia favorecerá la entrada del excedente de glucosa al interior muscular.

GLUT 5 (SLC2A5): Un Glut específico para la Fructosa
El Glut-5 es un transportador específico para fructosa (Km = 10-13 mM) que se expresa fundamentalmente en la células del ribete en cepillo del intestino delgado donde media el paso de la fructosa desde el lumen a la célula epitelial intestinal. Bajos niveles de este transportador también se encuentran en eritrocitos, riñón, espermatozoides, músculo esquelético y tejido adiposo de humanos y ratas (34). Su expresión en el músculo esquelético humano se relaciona a su capacidad de utilizar la fructosa para la glucólisis y la síntesis de glucógeno de forma independiente de la incorporación por medio del Glut-1 y el Glut-4. Este transportador no posee uno de los dominios de reconocimiento de la glucosa, el dominio QLS, en la alfa hélice Nº 7.

GLUT 6 (SLC2A6): Redefiniendo la clasificación
La proteína con mayor similaridad con el Glut 6 es el transportador Glut 8 (44,8% de homología). El Glut 6 y el Glut 8 se encuentran en una rama separada de la Clase III de la familia de los Glut´s y exhiben marcadas diferencias con los Glut´s 1 al 5. De hecho, 2 residuos de Arginina están presentes en posición 7 y 8 en el Glut 9, una región que se asocia con la especificidad del transportador por su sustrato. De manera interesante, los transportadores renales de aniones poseen estas Argininas en la misma posición del Glut 6, por lo que se ha especulado que esta proteína es un co-transportador anión/glucosa. Los parientes mas cercanos son el Glut 1 (28,5% de homología), el transportador de inositol de levaduras (26,4% de homología) y el transportador de Arabinosa y Xilosa de E. colli (28,4 y 25,7 % de homología respectivamente).

GLUT 7 (SLC2A7): Una historia plagada de errores
Desde hace tiempo se sabe que la fracción microsomal de hígados de rata y humanos debe existir algún tipo de transportador para Hexosas con un alto Km que debería permitir que la glucosa generada de la actividad enzimática de la Glucosa-6-fosfatasa en el retículo endoplásmico liso pueda alcanzar el citosol. De esta manera, un grupo de investigadores de la Universidad de Dundee, Escocia, se dieron a la tarea de analizar posibles secuencias génicas capaces de codificar dicho transportador, lográndose finalmente el aislamiento de un nuevo cDNA en hígado de rata que mostraba gran similaridad con las secuencias de los Glut´s1-6, pero haciéndose notar que dicha homología era mayor para el Glut 2. Para este momento se decidió que este cDNA correspondía al elusivo transportador Glut 7.

GLUT 8 (SLC2A8): La carrera por descubrir nuevos Gluts se ha iniciado
Recientemente se ha desarrollado un nuevo abordaje para la identificación de nuevos Gluts mediante la utilización de regiones extremadamente conservadas de los genes que sirven como plantillas que pueden ser comparadas con regiones de todo el genoma humano e intentar localizar regiones que tengan secuencias parecidas a estas regiones conservadas. Este abordaje llevó a la identificación y caracterización del Glut 8 y el Glut 9 (actualmente reclasificado como Glut 6).

Mediante análisis de Northern Blot el transcripto del gen del Glut 8 de 2,4 Kb se ha encontrado de manera predominante en testículos, blastocisto y cerebro (cerebelo e hipocampo) y en mucha menor cantidad en el bazo, próstata, intestino delgado, corazón, cerebro y músculo esquelético.

GLUT 9 (SLC2A9): El verdadero Glut 9
Según el alineamiento múltiple de la secuencia de aminoácidos deducida del ADNc el Glut 9 es un transportador perteneciente a la Clase II con una homología de un 55 % con el Glut 5, con el que comparte la pérdida del aminoácido Triptófano en la hélice 10 (el cual se conserva en los transportadores de la Clase I). Otra característica particular de este transportador es la presencia de un asa amino-terminal larga de unos 55 aminoácidos con un motif formado por dos Leucinas.

El gen que codifica el Glut 9 se encuentra ubicado en el cromosoma 4p15.3 y se expresa fuertemente en el riñón y el hígado, con bajos niveles en intestino delgado, placenta, pulmón y leucocitos.

GLUT 10 (SLC2A10): ¿Una pareja para el Glut-2?
La localización del gen y sus propiedades funcionales sugieren que el Glut 10 puede llevar a cabo funciones metabólicas de gran importancia y ser un elemento clave en el desarrollo de diabetes mellitus tipo 2.

Mediante la técnica de Northern blotting se ha determinado la distribución tisular del Glut-10. Este transportador se encuentra en mayor concentración en el hígado (adulto y fetal) y el páncreas, músculo cardíaco, pulmón, cerebro (adulto y fetal), músculo esquelético, placenta y riñón.

GLUT 11 (SLC2A11): ¿Otro transportador de fructosa?
Este es otro nuevo miembro de la Familia SLC2A aislado en el año 2001 por Sasaki y cols. Se ha determinado que el Glut 5 es el pariente más cercano de este transportador con el que comparte un 41,7% de homología. El gen del Glut 11 humano consta de 12 exones de 29 Kb de extensión que se localiza en el cromosoma 22 (22q11.2, y 20 MB de extensión). La transfección de células COS-7 con cADN del Glut 11 ha demostrado aumentar la capacidad de transporte de glucosa de estas células, sin embargo, un dato de interés, es que a diferencia del Glut 4 la actividad del transporte de glucosa del Glut 11 es inhibida en gran medida por la fructosa, lo que lleva a pensar que este es un transportador para fructosa con baja afinidad para la glucosa.

GLUT 12 (SLC-2A12): ¿El elusivo hermano menor del Glut-4?
Estudios recientes de inmunofluorescencia han sugerido que en ausencia de insulina el Glut 12 se localiza en la región perinuclear de las células MCF-7. El inmunobloting ha puesto en evidencia la expresión del Glut 12 en músculo esquelético, tejido adiposo e intestino delgado. Este hecho ha planteado la hipótesis que este transportador representa el elusivo segundo sistema de transporte sensible a la insulina que se encuentra en células musculares, ya que su ARNm se ha encontrado en músculo así como en próstata.

GLUT 13 (SLC-2A13): ¿Un transportador de mioinositol dentro de la clasificación de los Glut´s?
El Glut-13 ó transportador de H+/Inositol codifica una proteína transportadora de membrana de 629 aminoácidos con una analogía del 35 % con el Glut 6 y que se expresa fuertemente en células de la glía y en algunas neuronas con la capacidad de transportar mioinositol y glucosa cuando se encuentra a una alta concentración. El inositol y sus derivados fosforilados (Fosfoinositósidos) juegan función importante como osmolitos y como segundos mensajeros en la regulación de la exo y endocitosis de vesículas. La expresión de este transportador en ovocitos de Xenopus laevis ha demostrado que la actividad de transporte es casi exclusiva para el mioinositol y algunos de sus isómeros con una Km de 100 mM y su expresión preferencial en el S.N.C hace pensar que su principal papel esté en la regulación de estos metabolitos a nivel cerebral.

GLUT 14 (SLC-2A14): La frontera se hace cada día más lejana
En el año 2002 Wu y cols. del instituto Burnham en La Jolla, California, U.S.A identificaron lo que representa el último miembro de transportadores de esta familia ubicado en el cromosoma 12p13.3 (con 17.1 MB de extensión), y unas 10 MB corriente arriba del gen del Glut 3 con el cual comparte un importante parecido. Hasta ahora se había creído que el Glut 14 era un Pseudogen (igual que el Glut 6 en sus principios) resultado de la duplicación del gen del Glut 3. El gen del Glut 14 posee dos formas: una corta que consiste en 10 exones y produce un transcripto de 497 aminoácidos que es similar al Glut 3 en un 94,5%. La segunda forma, llamada forma larga codifica una proteina de 520 aminoácidos que difiere de la anterior en el extremo amino-terminal. Ambas forman poseen como todos los Glut´s 12 α-hélices transmembrana y los dominios relacionados con el transporte de glucosa. Sin embargo, en contraste con el Glut 3 este transportador se expresa fundamentalmente en los testículos donde su ARNm se encuentra en una concentración 4 veces mayor que el Glut 3.

CONCLUSIONES
·  El ingreso de la glucosa a las células se realiza mediante dos tipos de proteínas acarreadoras: los transportadores de glucosa asociados a sodio (SGLT) y los sistemas facilitadores del transporte de glucosa (GLUT).
·  Los transportadores de la glucosa SGLT y GLUT participan en el control hormonal del metabolismo al ser mediadores de la entrada, utilización y almacenamiento de la glucosa. Permiten un transporte de la glucosa altamente regulado al expresarse de manera diferencial en los tejidos y al depender de estímulos humorales diversos para regular su función. Actualmente se han caracterizado con detalle varios aspectos de estos transportadores, como la distribución de su expresión en los tejidos, su especificidad al sustrato, su cinética, y en el caso de algunos, su papel fisiológico. Sin embargo, aún falta por conocer diversos aspectos, como por ejemplo, los mecanismos mediante los cuales se regula su síntesis, el mecanismo de incorporación a las vesículas intracelulares, los mecanismos de translocación, internalización, degradación, etc. El conocimiento detallado de estos sistemas de transporte y el de su regulación en el futuro, nos permitirán diseñar estrategias terapéuticas más eficientes en el caso de su disfunción.
·  El estímulo eléctrico aumenta el glut4.
·  La fase temprana post-ejercicio: es independiente de la insulina (aumenta el RNAm del glut4 y su síntesis) 
·  La suplementación con carbohidratos durante y postejercicio aumenta los niveles de glucógeno muscular (aunque disminuye el RNAm del glut4).
·  Cuando el glucógeno muscular es muy alto, su síntesis no aumenta postejercicio aunque aumente el Glut4 y la hexoquinasa, posiblemente por aumento de la sensibilidad a la insulina.

BIBLIOGRAFIA
  • Alberts, B et al. (2002). Molecular Biology of the Cell. 4th edition.GarlandPublishing.
  • Brock, T. (1997) Biology of the Microorganisms. 8th edition. Prentice Hall. N.Y.
  • De Robertis, E.; Hib, J.; (2001). Fundamentos de Biología Celular y Molecular. 3º Edición. El Ateneo. Bs.As.
  • Harper,H. (1995). Manual de Bioquímica. Ediciones El Manual Moderno.
  • Karp, G. (1998). Biología Celular y Molecular. Ed. Mc Graw Hill- Interamericana. México.
  • Lehninger, A; Nelson, D; (1995). Principios de Bioquímica. 2º Edición. Ed. Omega. Barcelona.
  • Lodish, H.; (2001). Biología Molecular de la Célula. 4º Edición. Ed. Panamericana. Bs.As.
  • Maynard Smith, J; Szathmary, E. (2001). Ocho Hitos de la Evolución. Tusquets. Barcelona.
  • Stryer, L. (2002), Biochemestry. 5th Ed. WH Freeman . NY
Smith and Wood.(1998). Biología Molecular. Ed. Addisson-Wesley. Iberoamericana S.



Elaborado por:
Ganoza, Mariana; Serrano, Andrea & Ribotty, Valeria.
Estudiantes de Medicina Humana de la Universidad de San Martín de Porres
Chiclayo - Perú

10 comentarios:

Anónimo dijo...

excelente revision para ahondar mas en el conocimiento de la regulacion de glucos en el organismo.

Gracias

Anónimo dijo...

Buena revisión pero malas las referencias!!!! Has debido colocar que el artículo original es el siguiente:

Biología molecular de los transportadores de glucosa: clasificación, estructura y distribución

Valmore Bermúdez, Fernando Bermúdez, Nailet Arraiz, Elliuz Leal, Sergia Linares, Edgardo Mengual, Lisney Valdelamar, Moisés Rodríguez, Hamid Seyfi, Anilsa Amell, Marisol Carrillo, Carlos Silva, Alejandro Acosta, Johnny Añez, Carla Andara, Verónica Angulo, Gabriela Martins.

Universidad del Zulia. Facultad de Medicina. Centro de Investigaciones Endocrino–Metabólicas "Dr. Félix Gómez". Maracaibo, Estado Zulia. e-mail: fago@medscape.com

Recibido: 28/06/2007 Aceptado: 03/08/2007

Copiado casi textualmente!!

Anónimo dijo...

Muy buena información, me fue de mucha ayuda gracias, sin embargo no puedo dejar pasar que similitud no es igual a homología, homología es una aspecto evolutivo que nos dice si algo en este caso los genes vienen del mismo gen antecesor, algo se puede o no ser homologo no hay porcentajes para esto. Lo que ustedes manejan como homología es similitud.

Anónimo dijo...

Excelente aporte, me ha ayudado mucho para aclarar dudas, gracias!

Anónimo dijo...

Mas o menos tu revisión, el articulo original publicado en la revista scielo tiene hasta los mismos errores.
Menciona "Glucosa, galactosa y fructosa como hexosas" Cuando en realidad fructosa es una pentosa.

Ojo, procura que tus revisiones sean eso. Revisiones y transcripciones con todo y errores

Anónimo dijo...

¡¡¿Que fructosa es una pentosa?!!! ¿Desde cuando?. La fructosa es una hexosa. Seguramente tu error, garrafal error, es que al ver representada la fructosa como un pentagono te has pensado que es un azucar de 5 carbonos (seguramente por compararla con la ribosa de los acidos nucleicos).

Anónimo dijo...

¡La fructosa es una hexosa!

Es la cetohexosa isómero funcional de la glucosa.

Anónimo dijo...

la fructosa si es hexosa amigo, del grupo de las cesosas a diferendia de la glucosa y galactosa que son aldosas se diferencian por el grupo funcional y no por numero de carbonos, saludos

Anónimo dijo...

Hay un GRAN ERROR de un comentador al decir que la Fructosa es una Pentosa. La Fructosa es una Hexosa de las Cetosas.

Anónimo dijo...

YA ES 2016 Y LO SEGUIRE AFIRMANDO ,LA FRUCTOSA ES UNA HEXOSA !!! :D