Es la estructura que ayuda a controlar el paso de materiales entre la célula y su ambiente. Impide que algunas sustancias, como las proteínas y los lípidos, entren a la célula. Permite el paso de azúcares simples, oxígeno, agua y bióxido de carbono.
La membrana plasmática o celular es una estructura laminar formada por lipidos (con cabeza hidrofilica y cola hidrofobica) y proteinas que engloba a las células, define sus límites y contribuye a mantener el equilibrio entre el interior (medio intracelular) y el exterior (medio extracelular) de éstas. Además, se asemeja a las membranas que delimitan los orgánulos de células eucariotas.
Estructura de la Membrana Plasmática |
Está compuesta por una lámina que sirve de "contenedor" para el citosol y los distintos compartimentos internos de la célula, así como también otorga protección mecánica. Está formada principalmente por fosfolípidos (fosfatidiletanolamina y fosfatidilcolina), colesterol, glúcidos y proteínas (integrales y periféricas).
La principal característica de esta barrera es su permeabilidad selectiva, lo que le permite seleccionar las moléculas que deben entrar y salir de la célula. De esta forma se mantiene estable el medio intracelular, regulando el paso de agua, iones y metabolitos, a la vez que mantiene el potencial electroquímico (haciendo que el medio interno esté cargado negativamente).
Cuando una molécula de gran tamaño atraviesa o es expulsada de la célula y se invagina parte de la membrana plasmática para recubrirlas cuando están en el interior ocurren respectivamente los procesos de endocitosis y exocitosis.
Composición química
La composición química de la membrana plasmática varía entre células dependiendo de la función o del tejido en la que se encuentren, pero se puede estudiar de forma general. La membrana plasmática está compuesta por una doble capa de fosfolípidos, por proteínas unidas no covalentemente a esa bicapa, y glúcidos unidos covalentemente a los lípidos o a las proteínas. Las moléculas más numerosas son las de lípidos, ya que se calcula que por cada 50 lípidos hay una proteína. Sin embargo, las proteínas, debido a su mayor tamaño, representan aproximadamente el 50% de la masa de la membrana.
· Lípidos
El 98% de los lípidos presentes en las membranas celulares son anfipáticos, es decir que presentan un extremo hidrófilo (que tiene afinidad e interacciona con el agua) y un extremo hidrofóbico (que repele el agua). Los más abundantes son los fosfoglicéridos (fosfolípidos) y los esfingolípidos, que se encuentran en todas las células; le siguen los glucolípidos, así como esteroides (sobre todo colesterol). Estos últimos no existen o son escasos en las membranas plasmáticas de las células procariotas. Existen también grasas neutras, que son lípidos no anfipáticos, pero sólo representan un 2% del total de lípidos de membrana.
§ Fosfoglicéridos. Tienen una molécula de glicerol con la que se esterifica un ácido fosfórico y dos ácidos grasos de cadena larga; los principales fosfoglicéridos de membrana son la fosfatidiletanolamina o cefalina y la fosfatidilcolina o lecitina.
§ Esfingolípidos. Son lípidos de membrana constituidos por ceramida (esfingosina + ácido graso); solo la familia de la esfingomielina posee fósforo; el resto poseen glúcidos y se denominan por ello glucoesfingolípidos o, simplemente glucolípidos. Los cerebrósidos poseen principalmente glucosa, galactosa y sus derivados (como N-acetilglucosamina y N-acetilgalactosamina). Los gangliósidos contienen una o más unidades de ácido N-acetilneuramínico (ácido siálico).
§ Colesterol. El colesterol representa un 23% de los lípidos de membrana. Sus moléculas son pequeñas y más anfipáticas en comparación con otros lípidos. Se dispone con el grupo hidroxilo hacia el exterior de la célula (ya que ese hidroxilo interactúa con el agua). El colesterol es un factor importante en la fluidez y permeabilidad de la membrana ya que ocupa los huecos dejados por otras moléculas. A mayor cantidad de colesterol, menos permeable y fluida es la membrana. Se ha postulado que los lípidos de membrana se podrían encontrar en dos formas: como un líquido bidimensional, y de una forma más estructurada, en particular cuando están unidos a algunas proteínas formando las llamadas balsas lipídicas. Se cree que el colesterol podría tener un papel importante en la organización de estas últimas. Su función en la membrana plasmática es evitar que se adhieran las colas de ácido graso de la bicapa, mejorando la fluidez de la membrana. En las membranas de las células vegetales son más abundantes los fitoesteroles.
· Proteínas
El porcentaje de proteínas oscila entre un 20% en la vaina de mielina de las neuronas y un 70% en la membrana interna mitocondrial;1 el 80% son intrínsecas, mientras que el 20% restantes son extrínsecas. Las proteínas son responsables de las funciones dinámicas de la membrana, por lo que cada membrana tienen una dotación muy específica de proteínas; las membranas intracelulares tienen una elevada proporción de proteínas debido al elevado número de actividades enzimáticas que albergan. En la membrana las proteínas desempeña diversas funciones: transportadoras, conectoras (conectan la membrana con la matriz extracelular o con el interior), receptoras (encargadas del reconocimiento celular y adhesión) y enzimas. Según su grado de asociación a la membrana se clasifican en:
§ Integrales o Intrínsecas: Presentan regiones hidrófobas, por las que se pueden asociar al interior de la membrana y regiones hidrófilas que se sitúan hacia el exterior, por consiguiente, son anfipáticas. Solo se pueden separar de la bicapa si esta es destruida (por ejemplo con un detergente neutro). Algunas de éstas, presentan carbohidratos unidos a ellas covalentemente (glucoproteínas).
§ Periféricas o Extrínsecas: No presentan regiones hidrófobas, así pues, no pueden entrar al interior de la membrana. Están en la cara interna de esta (en el interior celular). Se separan y unen a esta con facilidad por enlaces de tipo iónico.
· Glúcidos
Estructura
Esquema de una membrana celular. Según el modelo del mosaico fluido, las proteínas (en rojo y naranja) serían como "icebergs" que navegarían en un mar de lípidos (en azul). Nótese además que las cadenas de oligosacáridos (en verde) se hallan siempre en la cara externa, pero no en la interna.
Antiguamente se creía que la membrana plasmática era un conjunto estático formado por las siguientes capas: proteínas/lípidos/lípidos/proteínas. Hoy en día se concibe como una estructura dinámica. El modelo estructural aceptado en la actualidad se conoce como "mosaico fluido". El mosaico fluido es un término acuñado por S. J. Singer y G. L. Nicolson en 1972. Consiste en una bicapa lipídica complementada con diversos tipos de proteínas. La estructura básica se mantiene unida mediante uniones no covalentes.
Esta estructura general -modelo unitario- se presenta también en todo el sistema de endomembranas (membranas de los diversos orgánulos del interior de la célula), como retículo endoplasmático, aparato de Golgi y envoltura nuclear, y los de otros orgánulos, como las mitocondrias y los plastos, que proceden de endosimbiosis.Bicapa lipídica
El orden de las cabezas hidrofílicas y las colas hidrofóbicas de la bicapa lipídica impide que solutos polares, como aminoácidos, ácidos nucleicos, carbohidratos, proteínas e iones, difundan a través de la membrana, pero generalmente permite la difusión pasiva de las moléculas hidrofóbicas. Esto permite a la célula controlar el movimiento de estas sustancias vía complejos de proteína transmembranal tales como poros y caminos, que permiten el paso de glucosa e iones específicos como el sodio y el potasio.Las cinco capas de moléculas fosfolípidas forman un "sándwich" con las colas de ácido graso dispuestos hacia el centro de la membrana plasmática y las cabezas de fosfolípidos hacia los medios acuosos que se encuentran dentro y fuera de la célula.
Bicapa Lipídica |
Proteínas
Las proteínas de la membrana plasmática se pueden clasificar según cómo se dispongan en la bicapa lipídica:
- Proteínas integrales. Embebidas en la bicapa lipídica, atraviesan la membrana una o varias veces, asomando por una o las dos caras (proteínas transmembrana); o bien mediante enlaces covalentes con un lípido o un glúcido de la membrana. Su aislamiento requiere la ruptura de la bicapa.
- Proteínas periféricas. A un lado u otro de la bicapa lipídica, pueden estar unidas débilmente por enlaces no covalentes. Fácilmente separables de la bicapa, sin provocar su ruptura.
En el componente proteico reside la mayor parte de la funcionalidad de la membrana; las diferentes proteínas realizan funciones específicas:
- Proteínas estructurales: estas proteínas hacen de "eslabón clave" uniéndose al citoesqueleto y la matriz extracelular.
- Receptores de membrana: que se encargan de la recepción y transducción de señales químicas.
- Transportadoras a través de membrana: mantienen un gradiente electroquímico mediante el transporte de membrana de diversos iones.
Estas a su vez pueden ser:
· Proteínas transportadoras: Son enzimas con centros de reacción que sufren cambios conformacionales.
Glúcidos
Los glúcidos se hallan asociados mediante enlaces covalentes a los lípidos (glucolípidos) o a las proteínas (glucoproteínas) y generalmente forman parte de la matriz extracelular o glucocálix.
Funciones
La función básica de la membrana plasmática es mantener el medio intracelular diferenciado del entorno. Esto es posible gracias a la naturaleza aislante en medio acuoso de la bicapa lipídica y a las funciones de transporte que desempeñan las proteínas. La combinación de transporte activo y transporte pasivo hacen de la membrana plasmática una barrera selectiva que permite a la célula diferenciarse del medio.
Los esteroides, como el colesterol, tienen un importante papel en la regulación de las propiedades físico-químicas de la membrana regulando su resistencia y fluidez.
Permeabilidad
La permeabilidad de las membranas es la facilidad de las moléculas para atravesarla. Esto depende principalmente de la carga eléctrica y, en menos medida, de la masa molar de la molécula. Pequeñas moléculas y moléculas con carga eléctrica neutra pasan la membrana más fácilmente que elementos cargados eléctricamente y moléculas grandes. Además, la membrana es selectiva, lo que significa que permite la entrada de unas moléculas y restringe la de otras. La permeabilidad depende de los siguientes factores:
- Solubilidad en los lípidos: Las sustancias que se disuelven en los lípidos (moléculas hidrófobas, no polares) penetran con facilidad en la membrana dado que está compuesta en su mayor parte por fosfolípidos.
- Tamaño: la mayor parte de las moléculas de gran tamaño no pasan a través de la membrana. Sólo un pequeño número de moléculas no polares de pequeño tamaño pueden atravesar la capa de fosfolípidos.
- Carga: Las moléculas cargadas y los iones no pueden pasar, en condiciones normales, a través de la membrana. Sin embargo, algunas sustancias cargadas pueden pasar por los canales proteícos o con la ayuda de una proteína transportadora.
También depende de las proteínas de membrana de tipo:
- Canales: algunas proteínas forman canales llenos de agua por donde pueden pasar sustancias polares o cargadas eléctricamente que no atraviesan la capa de fosfolípidos.
- Transportadoras: otras proteínas se unen a la sustancia de un lado de la membrana y la llevan al otro lado donde la liberan.
Proteína Integral de la membrana celular
Las proteínas integrales no son transmembranosas, pero están unidas de manera covalente a los lípidos de membrana del lado citosólico o del extracelular, en especial al glucosil fosfatidil inositol o a grupos isoprenoides. Las proteínas integrales, que representan más del 70% del total, permanecen tenazmente ancladas a la bicapa tanto durante su vida en la célula como cuando se intenta aislarlas para su estudio.
Para comprender mejor el modo en que las proteínas transmembranosas se mantienen insertadas en el espesor de la membrana, se debe recordar que como resultado del plegamiento proteico, en las proteínas extrínsecas (que son hidrosolubles) los aminoácidos hidrofílicos quedan expuestos a la superficie de la molécula, en contacto con el medio acuoso extracelular o con el del citosol, mientras que los hidrofóbicos permanecen ocultos en el interior del plegamiento.
Proteína Integral |
Proteína Extrínseca de la membrana celular
Las proteínas extrínsecas o periféricas no penetran en el interior hidrofóbico de la bicapa lipídica y se asocian con la membrana mediante interacciones débiles, del tipo de uniones iónicas u otras, tanto con las proteínas integrales como con las cabezas hidrofílicas de los fosfolipidos, del lado citosólico o del extracelular. Cumplen con sus funciones en la membrana o cerca de esta, y algunas pueden disociarse de la membrana en ciertas condiciones de la actividad celular.
BIBLIOGRAFÍA
Ø Introducción al estudio de la biología celular y molecular. Gerald Karp. Biología Celular y Molecular Conceptos y Experimentos Cuarta edición. Junio del 2005.vol4.p 140-146.
Ø Introducción al estudio de la biología celular y molecular. DE ROBERTIS, E. D. P. & DE ROBERTIS E. M. F. Biología celular y molecular Onceaba edición. Buenos Aires argentina. 1990.
LINKOGRAFÍA
Elaborado por:
- Torres, Samuel; Rodríguez, Giuliana & Bravo, Brenda.
Estudiantes de Medicina Humana de la Universidad de San Martín de Porres
Chiclayo - Perú
3 comentarios:
M gustarias que expliques especificamente las funciones de las proteinas extrinsecas del interior y del exterior..y muy buen blog lastima que le falta onda el color es como aburrido por eso tienes bajas en las visitas..ponele onda videos cosas asi..que atrigan..suerte gordo..
Buenas, excelente publicación me ha servido de mucho lo he leído y he quedado más informado que antes detalladamente.
De antemano gracias.
me ayudo mucho grasias
Publicar un comentario